

Anchoring Computational Thinking
in Today’s Curriculum

Conrad Wolfram, Wolfram Group

There is a lot of talk of Computational
Thinking as a new imperative of
education, so I wanted to address a few
questions that keep coming up about it.
What is it? Is it important? How does it
relate to today's school subjects? Is
Computer-Based Maths (CBM) a
Computational Thinking curriculum?

Firstly, I've got to say, I really like the term.

To my mind, the overriding purpose of education
is to enrich life (yours, your society's, not just in
terms of ‘riches’ but in meaning)—and having
different ways of thinking about how you look at
ideas, challenges and opportunities seems crucial
to achieving that.

Therefore, using a term of the form ‘X Thinking’
that cuts across boundaries but can support
traditional school subjects (e.g. history, English,
maths) and that emphasises an approach to
thinking is important to improving education.

Now, we've had widespread use of the term
‘Critical Thinking’ for some time, but to me it has
much less power of actuality than ‘Computational
Thinking’. Computation is a highly definitive set of
methodologies—a system for getting answers
from questions, and one rapidly gaining in power
and applicability each year. There is no parallel,
definitive ‘critic’ system; and even the related
‘critiquing’ is a rather vague skill bucket, not a
systemic—and highly successful—roadmap. As a
result, Critical Thinking often becomes more of an
aspiration of student capability, not a definable,
definite, life-enriching set of problem-solving
abilities.

To be specific, I'd argue that Computational
Thinking is a mode of thinking about life in which
you creatively and cleverly apply a four-step
problem-solving process to ideas, challenges and
opportunities you encounter, to make progress
with them.

Here's how it works.

Figure 1: CBM problem solving process

You start by defining the question that you really
want to address—a step shared with most
definitions of Critical Thinking.

But computational thinking follows this with a
crucial transitional step 2 in which you take these
questions and translate into abstract
computational language—be that code, diagrams
or algorithms. This has several purposes. It
means that hundreds of years’ worth of figured-
out concepts and tools can be brought to bear on
the question (usually by computer), because
you've turned the question into a form ready for
this high fidelity machinery to do its work. Another
purpose of step 2 is to force a more precise
definition of the question. In many cases this
abstraction step is the one that demands the
highest conceptual understanding, creativity,
experience and insight.

After abstraction comes step 3, the computation
itself—where the question is transformed into an
abstract answer, usually by computer.

In step 4 we take this abstract answer and
interpret the results, re-contextualising them in
the scope of our original questions and sceptically
verifying them.

The process rarely stops at that point, because it
can be applied over and over again with output
informing the next input until you deem the
answers sufficiently good. This might take just a
minute for a simple estimation, or a whole lifetime
for a scientific discovery.

Modern technology has dramatically shifted
the effective process because you don’t get

stuck on your helix roadway at step 3, so you
may as well zoom up more turns of the track

faster.

I think it's helpful to represent this iteration as
ascending a helix made up of a roadway of the
four steps, repeating in sequence until you can
declare success.

While I've emphasised the process end of
Computational Thinking, the power of its
application comes from (what are today!) very
human qualities of creativity and conceptual
understanding. The magic is in optimising how
process, computer and human can be put
together to solve increasingly tough problems.

The Computational
Thinking process

Figure 2: the Computational Thinking process

Is this process of Computational Thinking that I
describe connected with maths—are they even
one and the same? And what about coding?

There is very heavy overlap with the Computer-
Based Maths approach, and much less with
today's traditional maths education; coding is an
important element, particularly as the main way in
which you manifest abstraction.

Real-world maths—defining it and its applications
broadly, as I do—absolutely relies on
Computational Thinking. There are also specific
areas of knowledge that maths is considered to
contain (e.g. particular concepts and algorithms),
which are often important in applying
Computational Thinking to different areas of life.
Maths is a domain of factual knowledge as well as
the skills knowledge of how to process it.

Even in the real world this broad definition of
maths may be alien to engineers or scientists,
who would consider what I’m describing simply as
part of engineering or science respectively.

There’s another key difference, too, between a
traditional maths way of thinking about a problem
and a modern Computational Thinking approach,
and it has to do with the cost–benefit analysis
between the four steps of the helix.

Before modern computers, step 3—computation—
was very expensive because it had to be done
manually. Therefore, in real life you’d try very hard
to minimise the amount of computation at the
expense of much more upfront deliberation in
steps 1 (defining the question) and 2 (abstracting).
It was a very deliberate process. Now you might
have a much more scientific or experimental
approach, with a looser initial question for step 1
(‘Can I find something interesting in this data?’),
and an abstraction in step 2 leading to a
multiplicity of computations (‘Let me try plotting
correlation of all the pairs of data’)—because
computation (step 3) is so cheap and effective you
can try it lots and not worry if there’s wastage at
that step. Modern technology has dramatically
shifted the effective process because you don’t
get stuck on your helix roadway at step 3, so you
may as well zoom up more turns of the track
faster.

Figure 3: Computational Thinking process bar

A useful analogy is the change that digital
photography has brought. Taking photos on film
was relatively costly (though cheap compared with
the chemical-coated glass plates it replaced). You

didn’t want to waste film, so you'd be more
meticulous at setting the shot before you took it.
Now you may as well take the photo; it's cheap.
That doesn't mean you shouldn't be careful to set
up (abstract it) to get good results, but it does
mean the cost of misfires, wrong light exposure
and so forth is less. It also opens up new fields of
ad-hoc photography to a far wider range of
people. Both meticulous and ad-hoc modes can
be useful; the latter has added a whole new
toolset, though it doesn’t always replace the
original approach.

Back to maths. What’s sadly all too clear is that
today’s mainstream educational subject in this
space of ‘maths’ isn’t meeting the real-world need
of Computational Thinking that could be
addressed by Computer-Based Maths. Its focus
on teaching students how to do step 3 manually
might have made sense when that was the
sticking point in applying maths in life: because if
you couldn’t do the calculating, you couldn’t use
maths (or Computational Thinking). Conversely,
providing experience primarily in a very deliberate,
meticulous, uncontextualised, pre-computer
application of the computational process—rather
than in a faster-paced, computer-based,
experimental, scientific-style application to real
problems—cannot continue to be maths’ chief
purpose if the subject is to remain mainstream.
Instead, its primary purpose ought to be
Computational Thinking—as it is in our CBM
manifestation.

Like real-world maths, coding relies on
Computational Thinking but it isn't the same
subject or (by most definitions) anything like a
complete route to it. You need Computational
Thinking for figuring out how to extract problems
to code and get the computer to do what you
want, but coding is the art of instructing a
computer what to do; it's the expertise you need in
order to be the sophisticated manager of your
computing technology, and that includes speaking
a sensible coding language, or several, to your
computer.

What of other school subjects? Computational
Thinking should be applicable to a very wide
range. After all, it's a way of thinking—not the only
way of thinking, but an important perspective
across life. Whether it’s design (‘How can I design
a streamlined cycle helmet?’), or history (‘What
was the key message each US president's
inaugural address delivered?’), or music (‘How did
Bach’s use of motifs change over his career?’),
every subject should envelop a Computational
Thinking approach.

The Computational Thinking approach needs
knowledge of what’s possible, experience of

how you can apply it, and knowledge of
today’s machinery to perform it.

An important practical question is whether this
wider application can happen without there being
a core educational subject whose essence is
Computational Thinking? I don't think so. Not at
school levels, anyway. That’s because the
Computational Thinking approach needs
knowledge of what’s possible, experience of how
you can apply it, and knowledge of today’s
machinery to perform it. You need to know which
concepts and tools there are to translate and
abstract to in step 2. I don’t think you can learn
this only as part of other subjects; there needs to
be an anchor where these modern-day basics
(learnt in a contextualised way) can be fostered.

Politically, there are two primary ways to achieve
this: introduce a new core subject, or transform an
existing one. Either is a major undertaking. Maths
and coding are the only existing school subject
contenders for the transformational route. Maths
of course is ubiquitous, well-resourced and
occupies a big part of the curriculum—but today's
subject largely misses the mark. Coding is the
new kid on the block, too narrow, not fully
established; it has far less time or money but has
a zeal to go to new places.

How does CBM relate? For the very short term,
simply as the start of today's best structured
program for engendering Computational
Thinking—one that's principally around maths but
is applied to problems and projects from all
subjects.

Ultimately our aim is to build the anchor
Computational Thinking school subject as we
explicitly broaden CBM beyond being based in
maths (and, just as importantly, beyond the
perception of it being based only in maths). Look
out for modules of CBM geography and CBM
history!

Make no mistake: whatever the politics or how it’s
labelled, whoever wins or loses—someday a core,
ubiquitous school subject in the space I'm
describing will emerge. The first countries, regions
and schools that manage this new core and its
cross-curricular application will win big time.

This article was prepared for Horizon: Thought Leadership, a
publication of the Bastow Institute of Educational Leadership,
Department of Education and Training, Melbourne, Victoria,
Australia.

This was first published on 4 October 2016 as a blog post at www.conradwolfram.com/home/anchoring-computational-thinking-in-
todays-curriculum and is reproduced here with the permission of the author.

Conrad Wolfram, physicist, mathematician and technologist, is Strategic Director and European Co-Founder/CEO of the Wolfram group
of companies. Described as the ‘Computation Company’ and uniquely operating at the intersection of computation, data and knowledge,
the Wolfram Group is driving innovation across data science, modelling and maths through technology and solutions. Conrad is also
widely known for his thought leadership in reforming education using modern technology. He founded computerbasedmath.org to
fundamentally rethink and rebuild the mainstream maths education curriculum, introduce computational thinking and combine with
coding now computers can be assumed. The resulting major change is now a worldwide force in re-engineering STEM, with early
projects in Estonia, Sweden and Africa.

	Anchoring Computational Thinking in Today’s Curriculum
	The Computational Thinking process

